Approximation of Powers of x by Polynomials

P. DOUGLAS ELOSSER

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506 Communicated by Oved Shisha Received February 23, 1976

1. INTRODUCTION

Bell and Shah have used oscillating generalized polynomials [2-4] to find the best uniformly approximating polynomial of degree n on [0, 1] to functions of the form $f(x) = x^r$, where r is a positive rational number. They then determined lower bounds for

$$E_n(r) = \min_{c_1 \ 0 \le x \le 1} |x^r - (c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n)|.$$

This work was motivated by Bernstein's results [5] on the approximation of |x| on [-1, 1], which is equivalent to having $r = \frac{1}{2}$ and approximating on [0, 1].

In this paper we study the functions

$$E_n(\alpha) = \min_{c_i} \max_{0 \le x \le 1} |x^{\alpha} - (c_0 + c_1 x + \dots + c_n x^n)|,$$

$$E'_n(\alpha) = \min_{c_i} \max_{0 \le x \le 1} |x^{\alpha} - (c_1 x + c_2 x^2 + \dots + c_n x^n)|,$$

where $n \in N$, $\alpha > 0$ and c_i is real for each *i*. In so doing, the properties of Chebychev polynomials and of oscillating generalized polynomials are extremely useful in finding upper and lower bounds for $E_n(\alpha)$ for some α 's. In particular, Lemma 1 enables us to find greater lower bounds of $E_n(p/q)$ for certain positive integers *p* and *q* than were previously known. Similarly, smaller upper bounds for $E_n(\alpha)$ are also found when $1 < \alpha < n$ and $\alpha \notin N$. The theory becomes much more complete when we show that each of $E_n(\alpha)$ and $E'_n(\alpha)$ is strictly monotonic in certain intervals.

2. Oscillating Generalized Polynomials

Let $0 \le \alpha(0) < \alpha(1) < \cdots < \alpha(n)$ be a given set of rational numbers. Then $p(x) = c_0 x^{\alpha(0)} + c_1 x^{\alpha(1)} + \cdots + c_n x^{\alpha(n)}$, where c_i are real is said to P. DOUGLAS ELOSSER

be a generalized polynomial (g.p.). If $\max_{0 \le x \le 1} |p(x)|$ is attained for exactly n + 1 values of x in [0, 1], then p(x) is said to be an oscillating generalized polynomial (o.g.p.) in [0, 1] with exponents $\alpha(0), \alpha(1), \dots, \alpha(n)$. (We write for notational convenience $\alpha(j)$ for α_j .)

The following facts about g.p.'s and o.g.p.'s are stated: (i)-(vi) [2] and (vii) [6, p. 29]).

(i) (Property \mathscr{D}) (A) For every set of nonzero real numbers $\{c_0, c_1, ..., c_n\}$ and every set of rational numbers $\{\alpha(0), \alpha(1), ..., \alpha(n)\}$ with $0 \leq \alpha(0) < \alpha(1) < \cdots < \alpha(n)$, the number of zeros, a zero of order k counted as k zeros, in (0, 1] of the generalized polynomial

$$p(x) = c_0 x^{\alpha(0)} + c_1 x^{\alpha(1)} + \dots + c_2 x^{\alpha(2)} + \dots + c_n x^{\alpha(n)}$$

is at most equal to the number of variations of sign in the sequence $\{c_0, c_1, ..., c_n\}$.

(B) With the sets $\{c_0, c_1, ..., c_n\}$ and $\{\alpha(0), \alpha(1), ..., \alpha(n)\}$ as in (A), the number of zeros, a zero of order k counted as k zeros, in (0, 1] of p'(x) is at most equal to the number of variations of sign in the sequence $\{c_0, c_1, ..., c_n\}$.

(ii) To a given finite set of nonnegative exponents, there corresponds an o.g.p. in [0, 1] which is unique except for a constant factor.

(iii) Write $M = \max_{0 \le x \le 1} |p(x)|$. An o.g.p. p(x) assumes the values $\pm M$ alternately at n + 1 points in [0, 1].

(iv) Let $p(x) = \sum_{j=0}^{n} A_j x^{\alpha(j)}$ be an o.g.p. in [0, 1] and let $q(x) = \sum_{j=0}^{n} B_j x^{\alpha(j)}$ (all B_j real) be another generalized polynomial. Suppose $B_j = A_j$ for at least one j where $\alpha(j) > 0$. Then $\max_{0 \le x \le 1} |q(x)| > \max_{0 \le x \le 1} |p(x)|$.

(v) Let $p(x) = a_0 x^{\alpha(0)} + \sum_{k=1}^n a_k x^{\alpha(k)}$ and $q(x) = a_0 x^{\alpha(0)} + \sum_{k=1}^n b_k x^{\beta(k)}$ be o.g.p.'s such that $0 < \alpha(0) < \alpha(1) < \beta(1) < \cdots < \alpha(n) < \beta(n)$. Then $\max_{0 \le x \le 1} |p(x)| < \max_{0 \le x \le 1} |q(x)|$.

(vi) The coefficients of an o.g.p. $p(x) = a_0 x^{\alpha(0)} + a_1 x^{\alpha(1)} + \dots + a_n x^{\alpha(n)}$ alternate in sign.

(vii) $E_n(\alpha) > E'_n(\alpha)/2$ for $\alpha > 0$ and rational.

3. Application of Oscillating Generalized Polynomials

LEMMA 1. Let

$$p(x) = x^{\alpha(0)} + a_1 x^{\alpha(1)} + a_2 x^{\alpha(2)} + \dots + a_n x^{\alpha(n)}$$

and

$$q(x) = x^{\alpha(0)} + b_1 x^{\beta(1)} + b_2 x^{\beta(2)} + \dots + b_n x^{\beta(n)}$$

be the unique o.g.p.'s with 1 as the coefficient of $x^{\alpha(0)}$ and positive rational exponents $\{\alpha(0), \alpha(1), \alpha(2), ..., \alpha(n)\}$ and $\{\alpha(0), \beta(1), \beta(2), ..., \beta(n)\}$, respectively, where $0 < \alpha(0) < \alpha(1) < \cdots < \alpha(n)$ and $0 < \alpha(0) < \beta(1) < \cdots < \beta(n)$ and for $i = 1, 2, ..., n, \alpha(i) < \beta(i)$. Then $\max_{0 \le x \le 1} |p(x)| < \max_{0 \le x \le 1} |q(x)|$.

Proof. The α 's and β 's in this argument are all to be rational. First choose $\{\beta(1, 1), \beta(2, 1), ..., \beta(n, 1)\}$ by $\alpha(1) < \beta(1, 1) < \min\{\alpha(2), \beta(1)\}$ and for i = 2, 3, ..., n, let $\beta(i, 1) \in (\max\{\alpha(i), \beta(i-1)\}, \beta(i))$. Next suppose for $j \in N$ with 1 < j < n - 1 that $\{\beta(1, j), \beta(2, j), ..., \beta(n, j)\}$ has been chosen so that $\alpha(1) < \beta(1, j) < \beta(1, j - 1) < \alpha(2) < \beta(2, j) < \beta(2, j - 1) < \alpha(3) < \cdots < \alpha(j) < \beta(j, j) < \min\{\alpha(j+1), \beta(j, j-1)\}$ with $\beta(i, j) \in (\max\{\alpha(i), \beta(i-1, j-1)\}, \beta(i, j-1)\}$ for i = j + 1, j + 2, ..., n. Then choose $\{\beta(1, j + 1), \beta(2, j + 1), ..., \beta(n, j + 1)\}$ so that $\alpha(1) < \beta(1, j + 1) < \beta(1, j) < \alpha(2) < \beta(2, j + 1) < \beta(2, j) < \alpha(3) < \beta(3, j + 1) < \beta(3, j) < \cdots < \alpha(j) < \beta(j, j + 1) < \beta(2, j) < \alpha(j + 1) < \beta(j + 1, j + 1) < \min\{\beta(j + 1, j), \alpha(j + 2)\}$ and let $\beta(i, j + 1) \in (\max\{\beta(i - 1, j), \alpha(i)\}, \beta(i, j))$ for i = j + 2, j + 3, ..., n. Now for each i = 1, 2, ..., n - 1, define

$$p_i(x) = x^{\alpha(0)} + b_1^{(i)} x^{\beta(1,i)} + b_2^{(i)} x^{\beta(2,i)} + \dots + b_n^{(i)} x^{\beta(n,i)}$$

to be the unique o.g.p. with exponents $\{\alpha(0), \beta(1, i), \beta(2, i), ..., \beta(n, i)\}$ and 1 as the coefficient of $x^{\alpha(0)}$. Then by (v) of Section 2,

$$\max_{0 \le x \le 1} |p(x)| < \max_{0 \le x \le 1} |p_{n-1}(x)| < \max_{0 \le x \le 1} |p_{n-2}(x)|$$
$$< \cdots < \max_{0 \le x \le 1} |p_1(x)| < \max_{0 \le x \le 1} |q(x)|.$$

PROPOSITION 2. Let $n, k \in N$ with $k \ge 4$. Then $E_n(1/k) > 1/2(2n + 1)$.

Proof. Let $x^{(1/k)} + a_1x + a_2x^2 + \cdots + a_nx^n$ be the unique o.g.p. with exponents $\{1/k, 1, 2, \dots, n\}$ and with 1 as the coefficient of $x^{(1/k)}$. Then

$$E_{n}(1/k) > \frac{1}{2}E'_{n}(1/k) = \frac{1}{2} \max_{0 \le x \le 1} |x^{1/k} + a_{1}x + a_{2}x^{2} + \dots + a_{n}x^{n}|$$

= $\frac{1}{2} \max_{0 \le x \le 1} |x + a_{1}x^{k} + a_{2}x^{2k} + \dots + a_{n}x^{nk}|,$ (1)

by (vii) of Section 2. Also by Theorem 1, it follows that

$$\max_{0 \le x \le 1} |x + a_1 x^k + a_2 x^{2k} + \dots + a_n x^{nk}| > \max_{0 \le x \le 1} |T_{2n+1}(x)/(2n+1)| = \frac{1}{2n+1},$$
(2)

640/23/2-6

where $T_{2n+1}(x)$ is the Chebychev polynomial of degree 2n + 1. By (1) and (2) it follows that $E_n(1/k) > 1/2(2n + 1)$.

PROPOSITION 3. Let $p(x) = x + a_1x^3 + a_2x^6 + \cdots + a_nx^{3n}$ be the unique o.p. with exponents $\{1, 3, 6, ..., 3n\}$ and with 1 as the coefficient of x. Then $E'_n(1/3) = \max_{0 \le x \le 1} |p(x)| \ge 1/3(2n-1)$ with equality if and only if n = 1.

Proof. Let $n \ge 2$ and $r(x) = x + c_2 x^6 + c_3 x^9 + \dots + c_n x^{3n}$ be the unique oscillating polynomial (o.p.) with exponents $\{1, 6, 9, \dots, 3n\}$ and with 1 as the coefficient of x. Also, the unique o.p. with exponents $\{1, 3, 5, \dots, 2n - 1\}$ and with 1 as the coefficient of x is $T_{(2n-1)}(x)/(2n-1)$. Since 1 = 1, 3 < 6, $5 < 9, \dots, 2n - 1 < 3n$, it follows by Theorem 1 that

$$\max_{0 \le x \le 1} |r(x)| > \max_{0 \le x \le 1} |T_{(2n-1)}(x)/(2n-1)| = 1/(2n-1).$$

Now, if the technique used in [4, p. 273; 5, pp. 9, 10] is used with the fact that $\max_{0 \le x \le 1} |r(x)| > 1/(2n-1)$ and the transformation $y = x^{1/3}$, it is immediate that $E'_n(1/3) = \max_{0 \le x \le 1} |p(x)| > 1/3(2n-1)$.

If n = 1, then $p(x) = -T_3(x)/3$ and $\max_{0 \le x \le 1} |p(x)| = 1/3(2n-1)$.

COROLLARY 4. $E_n(1/3) = \min_{c_i} \max_{0 \le x \le 1} |x^{1/3} - (c_0 + c_1 x + \dots + c_n x^n)| > 1/6(2n-1).$

Proof. This follows by Proposition 3 and (vii) of Section 2.

PROPOSITION 5. (a) If $p, q \in N$ with 3p < q, then $E_n(p/q) > 1/2(2n + 1)$. (b) If $p, q \in N$ with 2p < q, then $E_n(p/q) > 1/4(1 + 2^{1/2})(2n - 1)$.

Proof. (a) Let $r(x) = x^{p/q} + b_1 x + b_2 x^2 + \dots + b_n x^n$ be the unique o.g.p. with exponents $\{p/q, 1, 2, ..., n\}$ and 1 as the coefficient of $x^{p/q}$. Let $\tilde{r}(x) = x + b_1 x^{(q/p)} + b_2 x^{2(q/p)} + \dots + b_n x^{n(q/p)}$. Then for i = 2, 3, ..., n, (i)(q/p) - (i - 1)(p/q) = p/q > 3. Therefore by Theorem 1,

$$E_n(p/q) = \max_{0 \le x \le 1} |r(x)| = \max_{0 \le x \le 1} |\tilde{r}(x)|$$

>
$$\max_{0 \le x \le 1} |T_{(2n+1)}(x)/(2n+1)| = 1/(2n+1).$$

Consequently, $E_n(p/q) > 1/2(2n + 1)$ by (vii) of Section 2.

(b) Let r(x) and $\tilde{r}(x)$ be as in part (a). Define $t(x) = x + c_1 x^2 + c_2 x^4 + \cdots + c_n x^{2n}$ to be the unique o.p. with exponents $\{1, 2, 4, \dots, 2n\}$ and with 1 as the coefficient of x. By Theorem 1,

$$\max_{0\leqslant x\leqslant 1}|r(x)|=\max_{0\leqslant x\leqslant 1}|\tilde{r}(x)|>\max_{0\leqslant x\leqslant 1}|t(x)|.$$

By [6, pp. 27, 28], $\max_{0 \le x \le 1} |t(x)| \ge 1/2(1 + 2^{1/2})(2n - 1)$. If $n \ge 2$, $E_n(p/q) > 1/4(1 + 2^{1/2})(2n - 1)$. For n = 1, let $p(x) = x + a_1x^2$, $s(x) = x^{p/q} + b_1x$, and $\tilde{s}(x) = x + b_1x^{q/p}$ be the unique o.g.p.'s. Then $p(x) = x - (1/2 + 1/(2^{1/2}))x^2$ by [5, p. 28] and

$$\max_{0 \le x \le 1} |s(x)| = \max_{0 \le x \le 1} |\tilde{s}(x)| > \max_{0 \le x \le 1} |p(x)| = \frac{1}{2(1+2^{1/2})(2n-1)}$$

by Theorem 1. Therefore, by (vii) of Section 2, $E_n(p/q) > 1/4(1 + 2^{1/2}) \times 1/(2n - 1)$.

LEMMA 6. If $\alpha > 0$ and $\alpha \notin N$, then $E_n(\alpha), E'_n(\alpha) > 0$.

This is obvious.

PROPOSITION 7. Let α be so that $1 < \alpha < n$. Then $E_n(\alpha) < 1/\{2(n - [\alpha - 1]) + 1\}$, where $[\alpha - 1]$ is the greatest integer $\leq \alpha - 1$.

Proof. If $[\alpha] = \alpha$, then by Theorem 6, the conclusion is trivial since $E_n(\alpha) = 0$. Therefore suppose that $[\alpha] \neq \alpha$. Next let

$$x^{\alpha} + b_2 x^{([\alpha]+1)} + b_3 x^{([\alpha]+2)} + \cdots + b_{j-1} x^{n-1} + b_j x^n,$$

with $j = n - [\alpha - 1]$, be the unique o.g.p. with exponents $\{\alpha, [\alpha] + 1, [\alpha] + 2, ..., n - 1, n\}$ and with 1 as the coefficient of x^{α} . It then follows by the Alternation Theorem and by the definition of o.g.p.'s that

$$E_n(\alpha) < \max_{0 \le x \le 1} |x^{\alpha} + b_2 x^{([\alpha]+1)} + b_3 x^{([\alpha]+2)} + \dots + b_j x^n|.$$

Also let

$$x^{\alpha} + c_2 x^{3\alpha} + c_3 x^{5\alpha} + \dots + c_j x^{\{2(n-[\alpha-1])-1\}\alpha}$$

be the unique o.g.p. with exponents $\{\alpha, 3\alpha, 5\alpha, ..., (2(n - [\alpha - 1]) - 1)\alpha\}$ and with 1 as the coefficient of x^{α} . Then by Theorem 1,

$$\begin{split} \max_{0 \leq x \leq 1} | x^{\alpha} + b_2 x^{([\alpha]+1)} + b_3 x^{([\alpha]+2)} + \dots + b_j x^n | \\ < \max_{0 \leq x \leq 1} | x^{\alpha} + c_2 x^{3\alpha} + c_3 x^{5\alpha} + \dots + c_j x^{(2(n-[\alpha-1])-1)\alpha} | \\ = \frac{1}{\{2(n-[\alpha-1])-1\}}, \end{split}$$

since $[\alpha] + 1 < 3\alpha$, $[\alpha] + 2 < 5\alpha, ..., n < \{2(n - [\alpha - 1]) - 1\} \alpha$ and $x^{\alpha} + c_2 x^{3\alpha} + c_3 x^{5\alpha} + \cdots + c_j x^{(2(n - [\alpha - 1]) - 1]\alpha} = T_{\{2(n - [\alpha - 1]) - 1\}}(x^{\alpha})/\{2(n - [\alpha - 1]) - 1\}.$

P. DOUGLAS ELOSSER

4. MONOTONICITY AND CONTINUITY OF E_n and E_n'

First, it is rather routine to show the following.

PROPOSITION 8. Each of E_n and E'_n is a continuous function on $(0, \infty)$.

COROLLARY 9. $E_n(1/3) \ge 1/2(n+1)$ (Compare this with Corollary 4.)

Proof. This follows by the continuity of E_n and by Proposition 5. Now let each of $\alpha(1), \alpha(2), \dots, \alpha(n), \alpha(n+1), \beta(1), \beta(2), \dots, \beta(n)$, and $\beta(n+1)$ be a rational number with $0 < \alpha(1) < \alpha(2) < \cdots < \alpha(n) < \alpha(n+1)$ and $0 < \beta(1) < \beta(2) < \cdots < \beta(n) < \beta(n+1)$ and suppose a_0 and b_0 are nonzero with the same sign. Let each of

$$p(x) = a_0 + a_1 x^{\alpha(1)} + a_2 x^{\alpha(2)} + \dots + a_n x^{\alpha(n)} + a_{n+1} x^{\alpha(n+1)}$$

and

$$q(x) = b_0 + b_1 x^{\beta(1)} + b_2 x^{\beta(2)} + \dots + b_n x^{\beta(n)} + b_{n+1} x^{\beta(n+1)}$$

be an o.g.p. If $\max_{0 \le x \le 1} |p(x)| = \max_{0 \le x \le 1} |q(x)| = M > 0$, then p(x) and q(x) are said to be an *M*-*n*-oscillating pair which is denoted by $\langle p(x), q(x) \rangle$.

LEMMA 10. Let $\langle p(x), q(x) \rangle$ be an *M*-n-oscillating pair and let $0 = p_0 < p_1 < \cdots < p_n < p_{n+1} = 1$ and $0 = q_0 < q_1 < \cdots < q_n < q_{n+1} = 1$ be the points in [0, 1] at which p(x) and q(x) take on their extreme values, respectively. Then there are two zeros of (p - q)(x) in $(0, \max\{p_1, q_1\}]$ if $(p - q)(\max\{p_1, q_1\}) = 0$ and there is one zero in $(0, \max\{p_1, q_1\}]$ if $(p - q)(\max\{p_1, q_1\}) \neq 0$.

Proof. Suppose $(p-q)(\max\{p_1, q_1\}) \neq 0$. Then $p_1 \neq q_1$. Suppose $p_1 < q_1$. Then either

- (i) $(p-q)(p_1) > 0$ and $(p-q)(q_1) \le 0$ or
- (ii) $(p-q)(p_1) < 0$ and $(p-q)(q_1) \ge 0$.

Consequently there is a zero of (p - q)(x) in $(0, \max\{p_1, q_1\}]$ since (p - q)(x) is continuous.

Suppose $(p-q)(\max\{p_1, q_1\}) = 0$ and $p_1 \leq q_1$. Then $(p-q)(q_1) = 0$ means that $p(q_1) = q(q_1) = M$ and $p'(q_1) = q'(q_1) = 0$. Consequently $(p-q)'(q_1) = 0$ and q_1 is a double zero of (p-q)(x) by Ahlfors [1, pp. 126, 127]. Then (p-q)(x) has two zeros in $(0, \max\{p_1, q_1\}]$. **PROPOSITION 11.** If $\langle p(x), q(x) \rangle$ is an *M*-n-oscillating pair, then (p-q)(x) has n + 1 zeros in (0, 1].

Proof. The notation is as in Lemma 10 and the proof proceeds by mathematical induction. Let $S = \{j \in N: \text{ for each } M\text{-}n\text{-}\text{oscillating pair } \langle p(x), q(x) \rangle$ with $n \ge j$, there are j zeros in $(0, \max\{p_j, q_j\}]$ if $(p - q)(\max\{p_j, q_j\}) \ne 0$ and there are j + 1 zeros in $(0, \max\{p_j, q_j\}]$ if $(p - q)(\max\{p_j, q_j\}) = 0$. By Lemma 10, $1 \in S$.

Suppose $j \in S$. Let $n \ge j + 1$ and let $\langle p(x), q(x) \rangle$ be an *M*-n-oscillating pair. Then either

- (A) $(p-q)(\max\{p_j, q_j\}) \neq 0$ or
- (B) $(p-q)(\max\{p_i, q_i\}) = 0.$

Case A

Suppose $(p - q)(\max\{p_j, q_j\}) \neq 0$. Then there are j zeros of (p - q)(x) in $(0, \max\{p_j, q_j\}]$. There are two possibilities.

Subcase A1. $(p-q)(\max\{p_{j+1}, q_{j+1}\}) = 0$ implies that there are j+2 zeros in $(0, \max\{p_{j+1}, q_{j+1}\}]$ because of a double zero at $\max\{p_{j+1}, q_{j+1}\}$.

Subcase A2. Suppose $(p - q)(\max\{p_{j+1}, q_{j+1}\}) \neq 0$.

(i) If $p_j < q_j$ and $p_{j+1} < q_{j+1}$, then by A and A2 it follows that $(p-q)(q_j) < 0$ with $(p-q)(q_{j+1}) > 0$ or $(p-q)(q_j) > 0$ with $(p-q)(q_{j+1}) < 0$.

(ii) If $q_j < p_j$ and $p_{j+1} < q_{j+1}$, then $(p-q)(p_j) < 0$ with $(p-q)(p_{j+1}) > 0$ or $(p-q)(p_j) > 0$ with $(p-q)(p_{j+1}) < 0$.

(iii) If $p_j < q_j$ and $q_{j+1} < p_{j+1}$, then $(p-q)(q_j) < 0$ with $(p-q)(q_{j+1}) > 0$ or $(p-q)(q_j) > 0$ with $(p-q)(q_{j+1}) < 0$.

(iv) If $q_j < p_j$ and $q_{j+1} < p_{j+1}$, then by A and A2, $(p-q)(p_j) < 0$ with $(p-q)(p_{j+1}) > 0$ or $(p-q)(p_j) > 0$ with $(p-q)(p_{j+1}) < 0$.

By (i)-(iv) it is clear that there is a zero of (p - q)(x) in $(\max\{p_j, q_j\}, \max\{p_{j+1}, q_{j+1}\}]$ and j + 1 zeros in $(0, \max\{p_{j+1}, q_{j+1}\}]$.

Case B

Suppose $(p-q)(\max\{p_j, q_j\}) = 0$. Therefore there are j+1 zeros of (p-q)(x) in $(0, \max\{p_j, q_j\}]$. Then there are two possibilities.

Subcase B1. Suppose $(p-q)(\max\{p_{j+1}, q_{j+1}\}) = 0$. Then (p-q)(x) has a double zero at $\max\{p_{j+1}, q_{j+1}\}$ and has j + 3 zeros in $(0, \max\{p_{j+1}, q_{j+1}\}]$.

Subcase B2. Suppose $(p-q)(\max\{p_{j+1}, q_{j+1}\}) \neq 0$. Then there are j+1 zeros in $(0, \max\{p_{j+1}, q_{j+1}\})$ since there are j+1 zeros in $(0, \max\{p_j, q_j\}]$.

Consequently, $j + 1 \in S$ and S = N. It follows that for an *M*-*n*-oscillating pair $\langle p(x), q(x) \rangle$, (p - q)(x) has *n* zeros in (0, max{ p_n, q_n }]. Since $p_{n+1} = q_{n+1} = 1$, (p - q)(1) = 0 and (p - q)(x) has n + 1 zeros in (0, 1].

LEMMA 12. Let r be a positive rational number. If s is also a rational number with $s \in (r, r + r/n)$, then $1/s < 1/r < 2/s < 2/r < \cdots < n/s < n/r$.

Proof. Let $s \in (r, r + r/n)$. Then s < r + r/n or n/r < (n + 1)/s. Suppose for some $i \in N$ with i < n that $i/r \ge (i + 1)/s$. Therefore $is \ge (i + 1)r$ and $(n - i)s + is \ge (n - i)r + (i + 1)r$, and $n/r \ge (n + 1)/s$. This is a contradiction.

PROPOSITION 13. Let r and s be rational numbers with $r \in (0, 1)$ and $s \in (r, \min\{r + r/n, 1\})$, then $E_n(r) \neq E_n(s)$.

Proof. Let $p_r(x) = b_0 + x^r + b_1x + b_2x^2 + \dots + b_nx^n$ and $p_s(x) = c_0 + x^s + c_1x + c_2x^2 + \dots + c_nx^n$ be the unique o.g.p.'s with exponents $\{0, r, 1, 2, \dots, n\}$ and $\{0, s, 1, 2, \dots, n\}$, respectively, and with 1 as the coefficient of each of x^r and x^s . Then each of

$$\tilde{p}_r(x) = b_0 + x + b_1 x^{1/r} + \dots + b_n x^{n/r}$$

and

$$\tilde{p}_s(x) = c_0 + x + c_1 x^{1/s} + \dots + c_n x^{n/s}$$

is also an o.g.p. Suppose $E_n(s) = E_n(r) = M$. Then $\langle \tilde{p}_r(x), \tilde{p}_s(x) \rangle$ is an *M*-*n*-oscillating pair. Clearly, $b_0 = -E_n(r) = -E_n(s) = c_0$, since the coefficients of $\tilde{p}_r(x)$ and $\tilde{p}_s(x)$ alternate in sign and o.g.p.'s take on extreme values at both 0 and 1.

 $(\tilde{p}_s - \tilde{p}_r)(x) = c_1 x^{1/s} - b_1 x^{1/r} + c_2 x^{2/s} - b_2 x^{2/r} + \dots + c_n x^{n/s} - b_n x^{n/r}$ and by Lemma 12, $1/s < 1/r < 2/s < 2/r < \dots < n/s < n/r$. By property \mathcal{D} , $(\tilde{p}_s - \tilde{p}_r)(x)$ has at most *n* zeros in (0, 1]. However, by Proposition 11, $(\tilde{p}_s - \tilde{p}_r)(x)$ has n + 1 zeros in (0, 1]. This contradiction implies that $E_n(r) \neq E_n(s)$.

PROPOSITION 14. Let $r \in (0, 1)$ and $s \in (0, 1] \cap (r, r + r/n)$ be rational numbers. Then $E_n(r) > E_n(s)$.

Proof. First let s < 1. Suppose $E_n(r) < E_n(s)$. Let $\tilde{p}_r(x) = b_0 + x + b_1 x^{1/r} + \cdots + b_n x^{n/r}$ and $\tilde{p}_s(x) = c_0 + x + c_1 x^{1/s} + \cdots + c_n x^{n/s}$ be as

in Proposition 13. Then by (vi) of Section 2, $E_n(r) = -b_0$ and $E_n(s) = -c_0$. Consequently

$$(\tilde{p}_s - \tilde{p}_r)(x) = (c_0 - b_0) + c_1 x^{1/s} - b_1 x^{1/r} + c_2 x^{2/s} - b_2 x^{2/r} + \dots + c_n x^{n/s} - b_n x^{n/r}$$

has only *n* sign changes in the finite sequence $\{(c_0 - b_0), c_1, -b_1, c_2, -b_2, ..., c_n, -b_n\}$, since $-b_0 = E_n(r) < E_n(s) = -c_0$ and $(c_0 - b_0) < 0$. Therefore $(\tilde{p}_s - \tilde{p}_r)(x)$ has at most *n* zeros in (0, 1], by property \mathcal{D} .

On the other hand let $0 = p_0 < p_1 < \cdots < p_n < p_{n+1} = 1$ be the n+2 points of the interval [0, 1] at which $\tilde{p}_s(x)$ takes on its extreme values in an alternating fashion.

Since $\tilde{p}_s(x)$ is continuous on [0, 1], for each i = 1, 2, ..., n + 1, the range of $\tilde{p}_s(x)$ on $[p_{i-1}, p_i]$ is $[c_0, -c_0]$. Therefore it is easily shown that there exists $z_i \in (p_{i-1}, p_i)$ with $(\tilde{p}_s - \tilde{p}_r)(z_i) = 0$ and $(\tilde{p}_s - \tilde{p}_r)(x)$ has at least n + 1 zeros in (0, 1]. This is a contradiction and $E_n(r) > E_n(s)$, since by Proposition 13, $E_n(r) \neq E_n(s)$.

If s = 1, by Lemma 6, $E_n(r) > 0$ and $E_n(s) = 0$ and $E_n(r) > E_n(s)$.

THEOREM 15. (a) E_n is strictly decreasing on (0, 1], and (b) E_n is strictly increasing on $[n, \infty)$.

Proof. (a) Since E_n is continuous, the result follows if E_n is strictly decreasing on the rational numbers in (0, 1]. Let r and s be rational numbers with $0 < r < s \leq 1$. Then there exists a smallest positive integer j so that r + j(r/2n) > s. For each k = 1, 2, ..., j, let $r_k = r + k(r/2n)$. Now $r = r_0 < r_1 < r_2 < \cdots < r_{j-1} < r_j$ with $r_{j-1} \leq s < r_j$ and $r_k < r_{k-1} + r_{(k-1)}/n$. Consequently, by Proposition 14, $E_n(r_k) < E_n(r_{k-1})$ for k = 1, 2, ..., j - 1, and either $E_n(r_{j-1}) \geq E_n(s)$ or $E_n(r_{j-1}) > E_n(s)$. Therefore $E_n(r) > E_n(s)$.

(b) As in part (a), it is only necessary to show that E_n is strictly increasing on the rational numbers in $[n,\infty)$. In the following, r and s are rational numbers. First suppose n < r < s. For if n = r, then by Lemma 6, the proof is trivial. Let

$$p_r(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + x^r$$

and

$$p_{s}(x) = c_{0} + c_{1}x + c_{2}x^{2} + \dots + c_{n}x^{n} + x^{s}$$

be the unique o.g.p.'s with exponents $\{0, 1, 2, 3, ..., n, r\}$ and $\{0, 1, 2, 3, ..., n, s\}$,

respectively, and with 1 as the coefficient of each of x^r and x^s . Therefore, by (vi) of Section 2, for each $i = 0, 1, 2, ..., n, b_i$ and c_i have the same sign. Let

$$\tilde{p}_r(x) = b_0 + b_1 x^{1/r} + \dots + b_n x^{n/r} + x$$

and

$$\tilde{p}_s(x) = c_0 + c_1 x^{1/s} + \dots + c_n x^{n/s} + x_n$$

Each of $\tilde{p}_r(x)$ and $\tilde{p}_s(x)$ is also an o.g.p.

Case A. Suppose *n* is even. Then both b_0 and c_0 are negative with $E_n(r) = -b_0$ and $E_n(s) = -c_0$.

(i) Suppose $E_n(s) = E_n(r)$. Then $c_0 = b_0$. Consequently,

$$(p_s - p_r)(x) = c_1 x^{1/s} - b_1 x^{1/r} + c_2 x^{2/s} - b_2 x^{2/r} + \dots + c_n x^{n/s} - b_n x^{n/r}$$

By Lemma 12, $1/s < 1/r < \cdots < n/s < n/r$; and property \mathscr{D} shows by examination of $\{c_1, -b_1, c_2, -b_2, ..., c_n, -b_n\}$, that $(\tilde{p}_s - \tilde{p}_r)(x)$ has at most *n* zeros in (0, 1]. This is a contradiction since $\langle \tilde{p}_r(x), \tilde{p}_s(x) \rangle$ is an *M*-*n*-oscillating pair and $E_n(r) \neq E_n(s)$.

(ii) Suppose that $E_n(s) < E_n(r)$. Then $-c_0 = E_n(s) < E_n(r) = -b_0$ and $c_0 - b_0 > 0$. By (vi) of Section 2, $c_1 > 0$ and the sequence $\{(c_0 - b_0), c_1, -b_1, c_2, -b_2, ..., c_n, -b_n\}$ of coefficients of

$$(\tilde{p}_s - \tilde{p}_r)(x) = (c_0 - b_0) + c_1 x^{1/s} - b_1 x^{1/r} + c_2 x^{2/s} - b_2 x^{2/r} + \dots + c_n x^{n/s} - b_n x^{n/r}$$

has *n* sign changes. Since $0 < 1/s < 1/r < \cdots < n/r < n/s$, by property \mathcal{D} , $(\tilde{p}_s - \tilde{p}_r)(x)$ has at most *n* zeros in (0, 1]. However, as in the proof of Proposition 14, it is clear that $(\tilde{p}_r - \tilde{p}_s)(x)$ has n + 1 zeros in (0, 1). Therefor $E_n(s) > E_n(r)$.

Case B. Suppose n is odd. This case is similar to Case A.

COROLLARY 16. $E_n(\alpha) \leq 1/2^{(2n+1)}$ for $\alpha \in [n, n+1]$ and $E_n(\alpha) > 1/2^{(2n+1)}$ for $\alpha \in (n+1,\infty)$.

Proof. Let $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + x^{n+1}$ be the unique o.p. with exponents $\{0, 1, 2, \dots, n, n+1\}$ and with 1 as the coefficient of x^{n+1} . Then

$$E_n(n+1) = \max_{\substack{0 \le x \le 1}} |p(x)|$$

= $\max_{\substack{0 \le x \le 1}} |a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n} + x^{(2n+2)}|$

and

$$\frac{T_{(2n+2)}(x)}{2^{(2n+1)}} = a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n} + x^{(2n+2)},$$

by uniqueness. By Theorem 15(b), $E_n(\alpha) \leq 1/[2^{(2n+1)}]$ for $\alpha \in [n, n+1]$ and $E_n(\alpha) > 1/[2^{(2n+1)}]$ for $\alpha \in (n+1, \infty)$ since $E_n(n+1) = 1/[2^{(2n+1)}]$.

THEOREM 17. (a) E'_n is strictly decreasing on (0, 1] and (b) E'_n is strictly increasing on $[n, \infty)$.

Proof. (a) Since E'_n is continuous it is sufficient to show the monotonicity on the rational numbers. Also suppose $s \in (r, \min\{1, r + r/n\})$, since the technique of the proof of Theorem 15 can be used otherwise. Let

$$p_r(x) = x^r + b_1 x + b_2 x^2 + \dots + b_n x^n$$

$$p_s(x) = x^s + c_1 x + c_2 x^2 + \dots + c_n x^n$$

be the unique o.g.p.'s with exponents $\{r, 1, 2, ..., n\}$ and $\{s, 1, 2, ..., n\}$, respectively, and with 1 as the coefficient of each of x^r and x^s . Then

$$\tilde{p}_r(x) = x + b_1 x^{1/r} + b_2 x^{2/r} + \dots + b_n x^{n/r}$$

and

$$\tilde{p}_s(x) = x + c_1 x^{1/s} + c_2 x^{2/s} + \dots + c_n x^{n/s}$$

are also o.g.p.'s. Since $0 < 1 < 1/s < 1/r < 2/s < 2/r < \cdots < n/s < n/r$, by (v) of Section 2,

$$\max_{0 \leqslant x \leqslant 1} |p_r(x)| = \max_{0 \leqslant x \leqslant 1} |\tilde{p}_r(x)| > \max_{0 \leqslant x \leqslant 1} |\tilde{p}_s(x)| = \max_{0 \leqslant x \leqslant 1} |p_s(x)|$$

and $E'_n(r) > E'_n(s)$. If s = 1, it follows by Lemma 6 that $E'_n(r) > E'_n(s)$ since $E'_n(s) = 0$.

(b) This part is similar and is omitted.

ACKNOWLEDGMENTS

The author wishes to thank Professor S. M. Shah for suggesting this problem and for his supervision.

References

- 1. L. V. AHLFORS, "Complex Analysis," McGraw-Hill, New York, 1966.
- 2. R. A. BELL, "Polynomials in Approximation Theory," Ph.D. Dissertation, University of Kentucky, June 1972.

- 3. R. A. BELL AND S. M. SHAH, Oscillating polynomials and approximations to |x|, *Publ. Ramanujan Inst.* 1 (1969), 167–177.
- 4. R. A. BELL AND S. M. SHAH, Oscillating polynomials and approximations to fractional powers of x, J. Approximation Theory 1 (1968), 269–274.
- 5. S. BERNSTEIN, Sur la meilleure approximation de |x| par des polynomes de degrés donnés, *Acta Math.* 37 (1913), 1–57.
- 6. J. C. BURKILL, "Lectures on Approximation by Polynomials," Tata Institute of Fundamental Research, Bombay, 1959.
- 7. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 8. G. G. LORENTZ, "Approximation of Functions," Holt, Rinehart & Winston, New York, 1966.
- 9. T. J. RIVLIN, "An Introduction to the Approximation of Functions," Blaisdell, Waltham, Mass., 1969.