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1. INTRODUCTION

Bell and Shah have used oscillating generalized polynomials [2-4] to
find the best uniformly approximating polynomial of degree n on [0, 1] to
functions of the form f(x) = x r , where r is a positive rational number. They
then determined lower bounds for

This work was motivated by Bernstein's results [5] on the approximation
of I x I on [-1, 1], which is equivalent to having r = t and approximating
on [0, 1].

In this paper we study the functions

where n E N, 0: > 0 and Ci is real for each i. In so doing, the properties of
Chebychev polynomials and of oscillating generalized polynomials are
extremely useful in finding upper and lower bounds for Eio:) for some o:'s.
In particular, Lemma 1 enables us to find greater lower bounds of En(pJq)
for certain positive integers p and q than were previously known. Similarly,
smaller upper bounds for En(o:) are also found when 1 < 0: < nand 0: ¢ N.
The theory becomes much more complete when we show that each of En(o:)
and E'n(O:) is strictly monotonic in certain intervals.

2. OSCILLATING GENERALIZED POLYNOMIALS

Let 0 ~ 0:(0) < 0:(1) < ... < o:(n) be a given set of rational numbers.
Then p(x) = coX"'IO) + c1x",(l) + ... + cnx",(n), where Ci are real is said to
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be a generalized polynomial (g.p.). If maxO<x<l Ip(x)j is attained for exactly
n + 1 values of x in [0, 1], then p(x) is said to be an oscillating generalized
polynomial (o.g.p.) in [0, 1] with exponents a(O), a(1), ... , a(n). (We write
for notational convenience aU) for aj .)

The following facts about g.p.'s and o.g.p.'s are stated: (i)-(vi) [2] and
(vii) [6, p. 29]).

(i) (Property fW) (A) For every set of nonzero real numbers
{co, C1 , ... , cn} and every set of rational numbers {a(O), a(1), ... , a(n)} with
o :(; a(O) < a(1) < ... < a(n), the number of zeros, a zero of order k
counted as k zeros, in (0, 1] of the generalized polynomial

is at most equal to the number of variations of sign in the sequence
{co, Cl , ... , cn}·

(B) With the sets {co, C1 , ... , cn} and {a(O), a(1), ... , a(n)} as in (A),
the number of zeros, a zero of order k counted as k zeros, in (0, 1] ofpr(x)
is at most equal to the number of variations of sign in the sequence
{co, Cl , ... , cn}·

(ii) To a given finite set of nonnegative exponents, there corresponds
an o.g.p. in [0, 1] which is unique except for a constant factor.

(iii) Write M = maxO<X<l Ip(x)l. An o.g.p. p(x) assumes the values
±M alternately at n + 1 points in [0, I].

(iv) Let p(x) = L;~o Ajx~(j) be an o.g.p. in [0, 1] and let q(x) =
L;~o Bjx~(j) (all Bj real) be another generalized polynomial. Suppose Bj = Aj
for at least one j where aU) > O. Then maxO<X<l Iq(x)I > maxO<X<l Ip(x)l.

(v) Let p(x) = aox~(O) + L~=l akx~(k) and q(x) = aox~(O) +
L~=l bkxf!(k) be o.g.p.'s such that 0 < a(O) < a(1) < f3(1) < ... < a(n) <
f3(n). Then maxO<X<l Ip(x) I < maxO<X<l I q(x)l.

(vi) The coefficients ofan o.g.p.p(x) =aox~(O) + alx~(l) + ... + anx~(n)

alternate in sign.

(vii) En(a) > E'n(a)/2 for a > 0 and rational.

3. ApPLICATION OF OSCILLATING GENERALIZED POLYNOMIALS

LEMMA 1. Let
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be the unique o.g.p.'s with 1 as the coefficient of x~(O) and positive rational
exponents {ex(O), ex(1), ex(2), ... , ex(n)} and {ex(O), ,B(I), ,B(2),... , ,B(n)}, respectively,
where 0 < ex(O) < ex(1) < ... < ex(n) and 0 < ex(O) < ,B(1) < ... < ,B(n)
and for i = 1,2,... , n, ex(i) < ,B(i). Then maxO';;",';;l Ip(x) I < maxO';;",';;l I q(x)l·

Proof The ex'S and ,B's in this argument are all to be rational. First
choose {,B(1, 1), ,B(2, 1),... , ,B(n, I)} by ex(1) < ,B(1, 1) < min{ex(2), ,B(1)} and
for i = 2,3'00" n, let ,8(i, 1) E (max{ex(i),,B(i - I)}, ,B(i). Next suppose for
j EN with 1 < j < n - 1 that {,B(1,j), ,B(2,j),00., ,B(n,j)} has been chosen
so that ex(1) < ,B(1, j) < ,B(1, j - 1) < ex(2) < ,B(2, j) < ,B(2, j - 1) <
ex(3) < ... < exU) < ,BU,j)< min{exU + 1), ,BU,j - I)} with,B(i,j) E (max{ex(i),
,B(i - 1, j - I)}, ,B(i, j - 1» for i = j + 1, j + 2'00" n. Then choose
{,B(1,j + 1), ,B(2,j + 1)'00" ,B(n,j + I)} so that ex(1) < ,B(1,j + 1) < ,B(1,j) <
(X(2) < ,B(2,j + 1) < ,B(2,j) < (X(3) < ,B(3,j + 1) < ,B(3,j) < ... < exU) <
,BU,j + 1) < ,BU,j) < (XU + 1) < ,BU + 1, j + 1) < min{,BU + 1, j),
(XU + 2)} and let ,B(i,j + 1) E (max{,B(i - l,j), (X(i)}, ,B(i,j» for i =j + 2,
j + 3'00" n. Now for each i = 1,2'00" n - 1, define

to be the unique o.g.p. with exponents {(X(O), ,B(l, i), ,B(2, i), ... , ,B(n, i)} and 1
as the coefficient of x~(O). Then by (v) of Section 2,

max Ip(x)I < max· IPn-l(x)1 < max IPn-2(x)1
O~x~l O~x~l O~x~l

< ... < max 1Pl(X) I < max I q(x)l.
O~x~l O~x~l

PROPOSITION 2. Let n, kEN with k ~ 4. Then EnCl/k) > 1/2(2n + 1).

Proof Let X(l/k) + a1x + a2x2+ ... + anxn be the unique o.g.p. with
exponents {11k, 1,2'00" n} and with 1 as the coefficient of X ll / k ). Then

= 1. max I x + a x k + a X2k + ... + a xnk I (1)2 O-'S;x<l 1 2 n,

by (vii) of Section 2. Also by Theorem 1, it follows that

max I x + a xk + a X2k + ... + a xnk IO,,;;x,,;;1 1 2 n

1
> O~:lt I T2n+1(x)/(2n + 1)1 = 2n + 1 ' (2)
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where T2n+l(x) is the Chebychev polynomial of degree 2n + 1. By (1) and (2)
it follows that En{1/k) > 1/2(2n + I).

PROPOSITION 3. Let p(x) = x + a1x3 + a2x6 + ... + anx3n be the unique
o.p. with exponents {I, 3, 6, ... , 3n} and with I as the coefficient of x. Then
E'n{1/3) = maxo<,,<llp(x)1 ;? 1/3(2n - I) with equality ifand only ifn = 1.

Proof Let n;? 2 and rex) = x + C2X 6 + C3X 9 + ... + cnx3n be the
unique oscillating polynomial (o.p.) with exponents {I, 6, 9, ... , 3n} and with I
as the coefficient of x. Also, the unique o.p. with exponents {I, 3, 5,... , 2n - I}
and with 1 as the coefficient of x is T(2n_l)(x)/(2n - I). Since 1 = I, 3 < 6,
5 < 9,... , 2n - I < 3n, it follows by Theorem 1 that

max 1r(x)I > max I T(2n_l)(x)/(2n - 1)1 = 1/(2n - I).
O~x~l O~x~l

Now, if the technique used in [4, p. 273; 5, pp. 9, 10] is used with the fact
that maxO<,,<l I r(x)1 > 1/(2n - I) and the transformation y = X 1 / 3, it is
immediate that E'n{1/3) = maxO<re<l Ip(x)I > 1/3(2n - 1).

If n = I, then p(x) = -T3(x)/3 and maxO<,,<l 1p(x)[ = 1/3(2n - I).

Proof This follows by Proposition 3 and (vii) of Section 2.

PROPOSITION 5. (a) !fp,qENwith3p < q,thenEn(p/q) > 1/2(2n+ I).

(b) Ifp, q E Nwith 2p < q, then EnCp/q) > 1/4(1 + 21 /2)(2n - I).

Proof (a) Let rex) = x p
/
q + b1x + b2x2+ .00 + bnxn be the unique

o.g.p. with exponents {p/q, I, 2, , n} and I as the coefficent of xP/Q. Let
rex) = x + b1x(q/P) + b2x2(q/P) + + bnxn(q/P). Then for i = 2,3'00" n,
(i)(q/p) - (i - l)(p/q) = p/q > 3. Therefore by Theorem I,

En(p/q) = max I r(x) I = max I r(x)I
O~x~1 O~x~1

> max I T(2n+l)(x)/(2n + 1)1 = 1/(2n + 1).
O~x<l

Consequently, En(p/q) > 1/2(2n + 1) by (vii) of Section 2.

(b) Let rex) and rex) be as in part (a). Define t(x) = x + C1X2+
c2x" + ... +cn x2n to be the unique o.p. with exponents {I, 2, 4, ... , 2n} and
with 1 as the coefficient of x. By Theorem 1,

max I r(x)I = max [r(x)1 > max I t(x)l.
O~x~l O~x~l O<x~l
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By [6, pp. 27, 28], maxO<"'<1 I t(x) I ~ 1/2(1 + 21/2)(2n - 1). If n ~ 2,
En(p/q) > 1/4(1 + 21/2)(2n - 1). For n = 1, let p(x) = x + a1x2, s(x) =
x p

/
q + b1x, and s(x) = x + b1x

q
/ P be the unique o.g.p.'s. Then p(x) =

x -- (1/2 + 1/(21 / 2)) x2 by [5, p. 28] and

max I s(x) I = max I s(x)I > max Ip(x)I = 2(1 + 21/~)(2 1)
O<x~l O~x~l O:S;;x<l n -

by Theorem 1. Therefore, by (vii) of Section 2, En ( p/q) > 1/4(1 + 21
/
2
) X

1/(2n - 1).

LEMMA 6. If IX > 0 and IX 1= N, then En(IX), E'iIX) > O.

This is obvious.

PROPOSITION 7. Let IX be so that 1 < ex < n. Then En(ex) < 1/{2(n ­
[ex - 1]) + I}, where [ex -- 1] is the greatest integer <;ex -- 1.

Proof If [ex] = ex, then by Theorem 6, the conclusion is trivial since
En(ex) = O. Therefore suppose that [ex] i= ex. Next let

with j = n -- [ex - 1], be the unique o.g.p. with exponents {ex, [ex] + 1,
[ex] + 2,... , n -- 1, n} and with 1 as the coefficient of x~. It then follows by
the Alternation Theorem and by the definition of o.g.p.'s that

E (ex) < max I x~ + b x([~l+1) + b x([~1+2) + ... + b·xn I.
n O~x<l 2 3 J I

Also let

be the unique o.g.p. with exponents {ex, 3ex, Sex, ... , (2(n -- [ex -- 1]) -- 1) ex}
and with 1 as the coefficient of x~. Then by Theorem 1,

max I x~ + b x([~]+l) + b x([~1+2) + ... + b·xn I
O<x<l 2 3 J i

< max I X~ + C X3~ + C X5~ + ... + C-X{2(n-[~-11)-1}~ I
O~x~l 2 3 J

{2(n -- [ex -- 1]) -- I} ,

since [ex] + 1 < 3ex, [ex] + 2 < Sex, ... , n < {2(n -- [ex -- 1]) -- I} ex and
x~ + c2x3~ + C3X5~ + ... + Cjx{2(n-[~-11)-1}~ = T{2(n_[~_1])_1}(x~)!{2(n --
[ex -- 1]) -- I}.
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4. MONOTONICITY AND CONTINUITY OF En AND En'

First, it is rather routine to show the following.

PROPOSITION 8. Each of En and E'n is a continuous function on (0, r:JJ).

COROLLARY 9. En(1/3);:?; 1/2(n + 1) (Compare this with Corollary 4.)

Proof This follows by the continuity of En and by Proposition 5.
Now let each of cx(1), cx(2), ... , cx(n), cx(n + 1),13(1),13(2),... , j3(n), and

j3(n + 1) be a rational number with°< cx(1) < cx(2) < ... < cx(n) < cx(n + 1)
and °< 13(1) < 13(2) < ... < j3(n) < j3(n + 1) and suppose ao and bo
are nonzero with the same sign. Let each of

and

be an o.g.p. If maxO<x<1 Ip(x)I = maXo<X<1 I q(x)1 = M> 0, then p(x)
and q(x) are said to be an M-n-oscillating pair which is denoted by
<p(x), q(x».

LEMMA 10. Let <p(x), q(x» be an M-n-oscillating pair and let °= Po <
PI < ... < Pn < Pn+l = 1 and °= qo < qi < ... < qn < qn+l = 1 be the
points in [0, 1] at which p(x) and q(x) take on their extreme values, respectively.
Then there are two zeros of (p - q)(x) in (0, max{pi ,ql}] if (p - q)(max
{PI' ql}) = ° and there is one zero in (0, max{pI' ql}] if (p - q)(max
{PI' ql}) =1= 0.

Proof Suppose (p - q)(max{pi ,ql}) =1= 0. Then PI =1= qi' Suppose
PI < qi . Then either

(i) (p - q)(PI) > °and (p - q)(ql) :'( °or

(ii) (p - q)(PI) < °and (p - q)(ql) ;:?; 0.

Consequently there is a zero of(p - q)(x) in (0, max{pI' ql}] since (p - q)(x)
is continuous.

Suppose (p - q)(max{pi , ql}) = °and PI :'( qi . Then (p - q)(ql) = °
means that P(ql) = q(ql) = M and P'(ql) = q'(ql) = 0. Consequently
(p - q)'(ql) = °and qi is a double zero of (p - q)(x) by Ahlfors [1, pp. 126,
127]. Then (p - q)(x) has two zeros in (0, max{pi , ql}].
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PROPOSITION 11. If <p(x), q(x) is an M-n-oscillating pair, then (p - q)(x)
has n + 1 zeros in (0, 1].

Proof The notation is as in Lemma 10 and the proof proceeds by mathe­
matical induction. Let S = {j E N: for each M-n-oscillating pair <p(x), q(x)
with n ~ j, there are j zeros in (0, max{pj , qj}] if (p - q)(max{pj , qj}) =1= 0
and there are j + 1 zeros in (0, max{pj , qj}] if (p - q)(max{pj ,qj}) = O}.
By Lemma 10, 1 E S.

Suppose j E S. Let n ~ j + 1 and let <p(x), q(x) be an M-n-oscillating
pair. Then either

(A) (p - q)(max{pj , qj}) =1= 0 or

(B) (p - q)(max{pj , qi}) = O.

Case A

Suppose (p - q)(max{pj , qj}) =1= O. Then there are j zeros of (p - q)(x)
in (0, max{pj , qj}]. There are two possibilities.

Subcase AI. (p - q)(max{pi+I , qm}) = 0 implies that there are j + 2
zeros in (0, max{pi+I , qi+I}] because of a double zero at max{pi+I , qi+I}'

Subcase A2. Suppose (p - q)(max{pi+I ,qm}) =1= O.

(i) If Pi < qj and Pi+I < qi+I, then by A and A2 it follows that

(p - q)(qj) < 0 with (p - q)(qi+l) > 0 or (p - q)(qj»O with (p - q)(qm)
< O.

(ii) If qj< pj andpj+l < qm, then (p - q)(Pj) < 0 with (p - q)(Pj+l)
> 0 or (p - q)(Pj) > 0 with (p - q)(Pm) < O.

(iii) Ifpj < qj and qi+I < Pi+I, then (p - q)(qi)< 0 with (p - q)(qi+l)
> 0 or (p - q)(qi) > 0 with (p - q)(qi+l) < O.

(iv) If qj < Pi and qm < Pi+I , then by A and A2, (p - q)(Pi) < 0
with (p - q)(Pm) > 0 or (p - q)(Pj) > 0 with (p - q)(Pm) < O.

By (i)-(iv) it is clear that there is a zero of (p - q)(x) in (max{pj, qj},
max{Pm , qm}] and j + 1 zeros in (0, max{Pm , qm)].

Case B

Suppose (p - q)(max{pi , qj}) = O. Therefore there are j + 1 zeros of
(p - q)(x) in (0, max{pi , qj}]. Then there are two possibilities.

Subcase B1. Suppose (p - q)(max{pi+I , qm}) = O. Then (p - q)(x)
has a double zero at max{Pi+l , qi+I} and has j + 3 zeros in (0, max{pi+I ,
qi+l}]'
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Subcase B2. Suppose (p - q)(maX{PHl ,qj+ln c/= 0. Then there are
j + 1 zeros in (0, max{pj+l ,qi+l)] since there are j + 1 zeros in
(0, max{pj, qj}].

Consequently, j + 1 E Sand S = N. It follows that for an M-n-oscillating
pair <p(x), q(x), (p - q)(x) has n zeros in (0, max{Pn ,qn}]' Since Pn+l =

qn+l = 1, (p - q)(1) = °and (p - q)(x) has n + 1 zeros in (0,1].

LEMMA 12. Let r be a positive rational number. If s is also a rational
number with s E (r, r + rln), then lis < llr < 21s < 21r < ... < nls < nlr.

Proof Let s E (r, r + rln). Then s < r + rln or nil' < (n + 1)/s. Suppose
for some i E N with i < n that ill' ?" (i + 1)/s. Therefore is ?" (i + 1) I'

and (n - i) s + is ?" (n - i) I' + (i + 1) r, and nlr?" (n + 1)/s. This is
a contradiction.

PROPOSITION 13. Let rand s be rational numbers with I' E (0, 1) and
s E (r, min{r + rln, In, then Eir) c/= En(s).

Proof Let Pr(x) = bo + xr + b1x + b2x2 + ... + bnxn and pix) =
Co + XS + C1x + C2X2 + ... + cnxn be the unique o.g.p.'s with exponents
{O, r, 1,2'00" n} and {O, s, 1,2'00" n}, respectively, and with 1 as the coefficient
of each of x r and X S

• Then each of

and

is also an o.g.p. Suppose En(s) = En(r) = M. Then <Pr(x), pix) is an
M-n-oscillating pair. Clearly, bo = -Eir) = -En(s) = co, since the
coefficients of Pr(x) and Ps(x) alternate in sign and o.g.p.'s take on extreme
values at both °and 1.

(Ps - Pr)(x) = C1X1/S - b1x1/r + C2X2
/ S - b2x2 / r + ... + cnxn/s - bnxn/r

and by Lemma 12, lis < III' < 21s < 21r < ... < nls < nlr. By property !?fi,
(Ps - Pr)(x) has at most n zeros in (0,1]. However, by Proposition 11,
(Ps - Pr)(x) has n + 1 zeros in (0, 1]. This contradiction implies that
En(r) c/= En(s).

PROPOSITION 14. Let r E (0, 1) and s E (0, 1] n (r, r + rln) be rational
numbers. Then Eir) > Eis).

Proof First let s < 1. Suppose En(r) < En(s). Let plx) = bo + x +
b1x1/r + ... + bnxn/r and p.(x) = Co + X + C1X1/S + ... + cnxn/s be as
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in Proposition 13. Then by (vi) of Section 2, En(r) = -bo and EnCs) = -co'
Consequently

(Ps - Pr)(x) = (co - bo) + C1X 1 / 8
- b1x1 / r + C2X 2 / S

- b2x2 / r + ... + cnxn/s - bnxn/r

has only n sign changes in the finite sequence{(co-bO),c1 ,-b1 , C2' - b2 , ... , cn ,

-bn}, since -bo = En(r) < En(s) = -co and (co - bo) < 0. Therefore
(Ps - Pr)(x) has at most n zeros in (0, 1], by property !'fi.

On the other hand let °= Po < PI < ... < Pn < Pn+l = 1 be the n + 2
points of the interval [0, 1] at which pix) takes on its extreme values in an
alternating fashion.

Since pix) is continuous on [0, 1], for each i = 1,2,... , n+ 1, the range
ofPs(x) on [Pi-I, Pi] is [co, -co]. Therefore it is easily shown that there exists
Zi EO (PH, Pi) with (Ps - Pr)(Zi) = °and (Ps - Pr)(x) has at least n + 1
zeros in (0, 1]. This is a contradiction and En(r) > En(s), since by Propo­
sition 13, En(r) =F En(s).

If s = 1, by Lemma 6, En(r) > °and EnCs) = °and En(r) > EnCs).

THEOREM 15. (a) En is strictly decreasing on (0, 1], and (b) En is strictly
increasing on [n, (0).

Proof (a) Since En is continuous, the result follows if En is strictly
decreasing on the rational numbers in (0, 1]. Let rand s be rational numbers
with °< r < s :'( 1. Then there exists a smallest positive integer j so that
r + j(r/2n) > s. For each k = 1, 2, ... ,j, let rk = r + k(r!2n). Now
r = ro < r1 < r2 < ... < rj_l < rj with rj_l :'( s < rj and r", < rk-l +
r(IHl!n. Consequently, by Proposition 14, EnCrk) < En(rk-l) for k = 1,2,... ,
j - 1, and either En(rj_l)?' En(s) or En(ri-l) > En(s). Therefore
EnCr) > En(s).

(b) As in part (a), it is only necessary to show that En is strictly
increasing on the rational numbers in [n,oo). In the following, rand s are
rational numbers. First suppose n < r < s. For if n = r, then by Lemma 6,
the proof is trivial. Let

and

be the unique o.g.p.'s with exponents {O, 1,2,3,... , n, r} and {O, 1,2,3,... , n, s},
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respectively, and with 1 as the coefficient of each of x r and x s• Therefore, by
(vi) of Section 2, for each i = 0, 1,2,... , n, bi and Ci have the same sign. Let

and

Each of Pr(x) and Ps(x) is also an o.g.p.

Case A. Suppose n is even. Then both bo and Co are negative with
EnCr) = -bo and En(s) = -Co.

(i) Suppose En(s) = En(r). Then Co = bo . Consequently,

By Lemma 12, I/s < I/r < ... < n/s < n/r; and property !!fi shows by
examination of {ci , -bi , C2 , -b2 , ••• , Cn , -bn }, that (Ps - Pr)(x) has at
most n zeros in (0, 1]. This is a contradiction since <P.(x), pix» is an M-n­
oscillating pair and En(r) =1= En(s).

(ii) Suppose that En(s) < En(r). Then -Co = En(s) < En(r) = -bo
and Co - bo > 0. By (vi) of Section 2, Ci > °and the sequence {(co - bo),
Ci , -bi , C2 , -b2 , ••• , Cn , -bn} of coefficients of

(Ps - Pr)(x) = (co - bo) + CiXi /S
- bixi /r + C2X

2/s

- b2x2/r + ... + cnxn/s - bnxn/r

has n sign changes. Since °< I/s < I/r < ... < n/r < n/s, by property !!fi,
(Ps - Pr)(x) has at most n zeros in (0, 1]. However, as in the proof of
Proposition 14, it is clear that (Pr - Ps)(x) has n + 1 zeros in (0, 1). There­
for En(s) > EnCr).

Case B. Suppose n is odd. This case is similar to Case A.

COROLLARY 16. En(ex) ~ I/2 12n+l)for ex E [n, n + 1] and En(ex) > I/2 12n+1)

for ex E (n + 1,(0).

Proof Let p(x) = ao + aix + a2x2+ ... + anxn + xn+i be the unique
o.p. with exponents {O, 1,2,... , n, n + I} and with 1 as the coefficient of
x n+1. Then

EnCn + 1) = max I p(x) I
O:;:;;x~l

= max I a + a x2+ a x4 + ... + a x2n + x(2n+2) I
O~xO::::;;;l 0 1 2 n
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by uniqueness. By Theorem l5(b), En(rx) ~ 1/[212n+l)] for rx E [n, n + 1]
and En(rx) > 1/[212n+l)] for rx E (n + 1, (0) since Ein + 1) = 1/[2(2n+!)].

THEOREM 17. (a) E'n is strictly decreasing on (0, 1] and (b) E'n is strictly
increasing on [n, OCJ).

Proof (a) Since E'n is continuous it is sufficient to show the mono­
tonicity on the rational numbers. Also suppose s E (r, min{l, r + rln}),
since the technique of the proof of Theorem 15 can be used otherwise. Let

Pr(x) = xr + b1x + b2x 2 + + bnxn

pix) = X
S + c1x + C2X

2 + + cnxn

be the unique o.g.p.'s with exponents {r, 1,2'00" n} and {s, 1,2'00" n}, respec­
tively, and with 1 as the coefficient of each of x r and X S

• Then

and

are also o.g.p.'s. Since 0 < I < lis < llr < 2/s < 21r < ... < nls < nlr,
by (v) of Section 2,

max IPr(x) [ = max [Pr(x)[ > max [pix)] = max [pix)[
O~x~l O~x~l O~x<l O<x<1

and E'n(r) > E'n(s). If s = 1, it follows by Lemma 6 that E'n(r) > E'n(s)
since E'n(s) = O.

(b) This part is similar and is omitted.
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